Bounds for Levinger’s function of nonnegative almost skew-symmetric matrices
نویسندگان
چکیده
The analysis of the Perron eigenspace of a nonnegative matrix A whose symmetric part has rank one is continued. Improved bounds for the Perron root of Levinger’s transformation (1 − α)A+ αAt (α ∈ [0, 1]) and its derivative are obtained. The relative geometry of the corresponding left and right Perron vectors is examined. The results are applied to tournament matrices to obtain a comparison result for their spectral radii. © 2006 Elsevier Inc. All rights reserved. AMS classification: 15A18; 15A42; 15A60; 05C20
منابع مشابه
The Perron eigenspace of nonnegative almost skew-symmetric matrices and Levinger’s transformation
Let A be a nonnegative square matrix whose symmetric part has rank one. Tournament matrices are of this type up to a positive shift by 1/2I . When the symmetric part of A is irreducible, the Perron value and the left and right Perron vectors of L(A, α) = (1 − α)A+ αAt are studied and compared as functions of α ∈ [0, 1/2]. In particular, upper bounds are obtained for both the Perron value and it...
متن کاملThe (R,S)-symmetric and (R,S)-skew symmetric solutions of the pair of matrix equations A1XB1 = C1 and A2XB2 = C2
Let $Rin textbf{C}^{mtimes m}$ and $Sin textbf{C}^{ntimes n}$ be nontrivial involution matrices; i.e., $R=R^{-1}neq pm~I$ and $S=S^{-1}neq pm~I$. An $mtimes n$ complex matrix $A$ is said to be an $(R, S)$-symmetric ($(R, S)$-skew symmetric) matrix if $RAS =A$ ($ RAS =-A$). The $(R, S)$-symmetric and $(R, S)$-skew symmetric matrices have a number of special properties and widely used in eng...
متن کاملM ar 2 00 7 Regular , pseudo - regular , and almost regular matrices
We give lower bounds on the largest singular value of arbitrary matrices, some of which are asymptotically tight for almost all matrices. To study when these bounds are exact, we introduce several combinatorial concepts. In particular, we introduce regular, pseudo-regular, and almost regular matrices. Nonnegative, symmetric, almost regular matrices were studied earlier by Hoffman, Wolfe, and Ho...
متن کاملRegular, pseudo-regular, and almost regular matrices
We give lower bounds on the largest singular value of arbitrary matrices, some of which are asymptotically tight for almost all matrices. To study when these bounds are exact, we introduce several combinatorial concepts. In particular, we introduce regular, pseudo-regular, and almost regular matrices. Nonnegative, symmetric, almost regular matrices were studied earlier by Ho¤man, Wolfe, and Ho¤...
متن کاملThe exponential functions of central-symmetric $X$-form matrices
It is well known that the matrix exponential function has practical applications in engineering and applied sciences. In this paper, we present some new explicit identities to the exponential functions of a special class of matrices that are known as central-symmetric $X$-form. For instance, $e^{mathbf{A}t}$, $t^{mathbf{A}}$ and $a^{mathbf{A}t}$ will be evaluated by the new formulas in this par...
متن کامل